The Molecular and Crystal Structures of Gibberellin \mathbf{A}_{4} and Gibberellin A $_{13}$ Methyl Esters

By George Ellames, James R. Hanson,* Peter B. Hitchcock,* and Sunday A. Thomas, The School of Molecular Sciences, University of Sussex, Brighton, Sussex BN1 90J

The X-ray structures of gibberellin A_{4} methyl ester and gibberellin A_{13} trimethyl ester have been determined. Ring A is flattened and the crowding of $C(7)$ by $C(18)$ and $C(15)$ is greater in gibberellin A_{13} trimethyl ester when compared to gibberellin A_{4}.

The gibberellin plant hormones may be divided into two classes; the C_{20} compounds exemplified by gibberellin A_{13} (la) ${ }^{1}$ and the C_{19} compounds such as gibberellic acid (2). ${ }^{2}$ There are a number of chemical differences

(1)
$\alpha ; R=H$
$b ; R=M e$

(3)

$$
\begin{aligned}
& a ; R=H \\
& b ; R=M e
\end{aligned}
$$

between the two series in, for example, the balance between the elimination and substitution reactions at $\mathrm{C}(3)^{3}$ and the increased steric hindrance at $\mathrm{C}(7)$ in the C_{20} gibberellins. ${ }^{4}$ Furthermore the C_{19} gibberellins are generally more biologically active than the C_{20} compounds. ${ }^{5}$ We have undertaken an X-ray study to compare gibberellins $\mathrm{A}_{4}(3)$ and $\mathrm{A}_{13}(1)$ which differ in the replacement of the $19,10 \gamma$-lactone ring by a 19,20 dioic acid. Previous X-ray studies have been performed on several derivatives of C_{19} gibberellins. ${ }^{6}$
The molecular stereochemistry and atom numbering schemes of gibberellins A_{4} and A_{13} methyl esters (3b) and (lb), respectively, are shown in Figure 1. Final atom position parameters are listed in Table 1 and bond lengths and angles are given in Table 2. In both molecules the crystal structure contains intermolecular hydrogen bonds from the hydroxy-group to the $\mathrm{C}(7)$ carbonyl group. These are of length $1.98 \AA$ for $\mathrm{O}(2) \cdots$ $\mathrm{H}(28)-\mathrm{O}(1)$ in A_{13} between molecules related by the screw axis along b, and $1.95 \AA$ for $\mathrm{O}(4) \cdots \mathrm{H}(25)-\mathrm{O}(3)$
in A_{4} between molecules related by the screw axis along a, as seen in the packing diagrams (Figure 3).

The bond lengths and angles are within the expected ranges, with the ester $\mathrm{C}-\mathrm{O}$ bonds averaging $1.34 \AA$ in contrast to the other $\mathrm{C}-\mathrm{O}$ bonds (av. $1.46 \AA$) reflecting a
small contribution of the resonance form $\mathrm{R}-\mathrm{C}=\mathrm{O}^{+-} \mathrm{R}$ as seen in other structures. ${ }^{6}$ The two molecules differ mainly in the conformation of ring a. In gibberellin A_{13} trimethyl ester (lb) the two axial ester groups are arranged approximately parallel but slightly splayed

Figure 1 Crystal structures of (a) gibberellin A_{13} trimethyl ester (lb) and (b) gibberellin A_{4} methyl ester (3b)
apart to minimise steric strain as shown by the distance of $2.95 \AA$ for $\mathrm{C}(19) \cdots \mathrm{C}(20)$ compared to $2.61 \AA$ for $\mathrm{C}(4) \cdots \mathrm{C}(10)$. They are also rotated by 180° with respect to each other presumably to minimise interaction

Frgure 2 Structures viewed in projection on the plane of the $C(7)$ ester groups: (a) gibberellin A_{13} trimethyl ester (lb); (b) gibberellin A_{4} methyl ester (3b)
between the carbonyl dipoles and between the methyl groups $\mathrm{C}(22)$ and $\mathrm{C}(23)$. In gibberellin A_{4} methyl ester (3b) the lactone bridge joining $C(4)$ and $C(10)$ reverses the flattening of ring a found in A_{13}, effectively moving $C(19)$ closer to $C(10)$. Consequently the $C(18)$ methyl group is moved round in the same angular direction thus changing its position with respect to the $C(7)$ ester

Table 1
(a) Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ for gibberellin A_{13} trimethyl ester (lb) with estimated standard deviations in parentheses in the units of the last significant figure
(i) Non-hydrogen atoms

	x	y	z
C(1)	1040 (2)	2 178(2)	4360 (5)
C(2)	$1494(2)$	$1651(2)$	$5525(6)$
C(3)	1 046(2)	1669 (2)	7 046(5)
C(4)	$0904(2)$	$2534(2)$	7 695(4)
C(5)	0 449(2)	3041 (2)	$6432(3)$
$\mathrm{C}(6)$	0141 (2)	3 920(2)	6 682(3)
C(7)	-0620(2)	4 029(2)	7 738(3)
$\mathrm{C}(8)$	-0115(2)	$4215(2)$	5048 (3)
$\mathrm{C}(9)$	$0374(2)$	3 636(2)	3943 (4)
$\mathrm{C}(10)$	0 955(2)	3 067(2)	4 922(4)
C(11)	$0852(3)$	4100 (3)	2 670(4)
C(12)	0 293(3)	4768 (3)	$1955(4)$
C(13)	-0311(3)	$5185(2)$	3 107(4)
$\mathrm{C}(14)$	$0082(3)$	$5119(2)$	4 694(4)
$\mathrm{C}(15)$	- $1103(2)$	4 206(2)	4 695(4)
C(16)	- 1149 (2)	4 716(2)	3 256(5)
C(17)	- 1 806(3)	4 696(4)	2306 (6)
C(18)	0 345(3)	$2465(2)$	9 137(4)
C(19)	$1784(2)$	$2883(2)$	$8194(4)$
$\mathrm{C}(20)$	1 847(2)	3491 (2)	5 065(4)
C(21)	-1918(3)	3461 (3)	$8719(6)$
$\mathrm{C}(22)$	2473 (3)	3 988(3)	9410 (6)
$\mathrm{C}(23)$	3 292(3)	$3519(3)$	4 193(9)
$\mathrm{O}(1)$	0 208(2)	$1292(1)$	6 920(4)
$\mathrm{O}(2)$	-0751(2)	4 644(1)	8473 (3)
$\mathrm{O}(3)$	-1158(1)	3 390(1)	7 732(3)
$\mathrm{O}(4)$	2 477(2)	$2578(2)$	$7959(5)$
$\mathrm{O}(5)$	1 682(2)	$3584(2)$	8962 (3)
$\mathrm{O}(6)$	1 987(2)	$4091(2)$	5 817(3)
$\mathrm{O}(7)$	$2435(2)$	$3148(2)$	$4155(4)$

Table 1(a) (Continued)
(ii) Co-ordinates $\left(\times 10^{4}\right)$ of the hydrogen atoms

	x	y	z	Bonded to
H(1)	0429	1959	4096	C(1)
H(2)	1389	2123	3395	C(1)
$\mathrm{H}(3)$	2120	1815	5988	$\mathrm{C}(2)$
$\mathrm{H}(4)$	1469	1090	5305	$\mathrm{C}(2)$
$\mathrm{H}(5)$	1388	1343	7842	$\mathrm{C}(3)$
$\mathrm{H}(6)$	-0 044	2620	6176	C(5)
$\mathrm{H}(7)$	0627	4299	7056	$\mathrm{C}(6)$
$\mathrm{H}(8)$	-0140	3220	3615	$\mathrm{C}(9)$
H(9)	0958	3715	1734	$\mathrm{C}(11)$
$\mathrm{H}(10)$	1374	4432	3077	C(11)
H(11)	0758	5201	1522	$\mathrm{C}(12)$
H(12)	-0 095	4589	1099	C(12)
H(13)	-0403	5781	2791	C(13)
H(14)	-0 175	5485	5412	C(14)
H(15)	0667	5280	4841	C(14)
H(16)	-1401	3558	4556	C(15)
H(17)	-1486	4457	5564	C(15)
H(18)	-2 352	4249	2416	$\mathrm{C}(17)$
$\mathrm{H}(19)$	-1762	5105	1423	C(17)
$\mathrm{H}(20)$	0542	2080	9921	C(18)
$\mathrm{H}(21)$	0178	3007	9585	$\mathrm{C}(18)$
$\mathrm{H}(22)$	-0 239	2215	8897	$\mathrm{C}(18)$
$\mathrm{H}(23)$	-1657	3518	9799	$\mathrm{C}(21)$
$\mathrm{H}(24)$	-2047	2881	9372	$\mathrm{C}(21)$
$\mathrm{H}(25)$	2997	4040	8549	$\mathrm{C}(22)$
$\mathrm{H}(26)$	3274	4201	3989	$\mathrm{C}(23)$
$\mathrm{H}(27)$	3603	3404	3411	$\mathrm{C}(23)$
$\mathrm{H}(28)$	0194	0726	6876	$\mathrm{O}(1)$
$\mathrm{H}(29)$	-2282	3054	8402	C (21)
$\mathrm{H}(30)$	2285	4596	9827	$\mathrm{C}(22)$
$\mathrm{H}(31)$	2868	3514	10210	$\mathrm{C}(22)$
H(32)	3551	3918	5139	$\mathrm{C}(23)$

(b) Fractional atomic co-ordinates ($\times 10^{4}$) for gibberellin A_{4} methyl ester (3b) with estimated standard deviations in parentheses in the units of the last significant figure
(i) Non-hydrogen atoms

	x	y	z
C(1)	-0576(4)	0 243(2)	$6735(5)$
C(2)	0 485(5)	$0153(2)$	$8051(5)$
C(3)	1956 (4)	$0372(2)$	7 655(5)
C(4)	1 927(4)	0 985(1)	6831 (4)
C(5)	1080 (4)	0930 (1)	5316 (4)
C(6)	0913 (3)	1 496(1)	$4334(4)$
C(7)	2044 (3)	$1579(1)$	$3112(4)$
C(8)	-0592(3)	$1470(1)$	3639 (4)
$\mathrm{C}(9)$	- $1424(4)$	1 040(2)	4 735(4)
C(10)	-0397(4)	$0851(1)$	$5997(4)$
C(11)	-2819(4)	1 297(2)	$5318(5)$
C(12)	-3683(4)	$1573(2)$	3 99b(6)
C(13)	-2 727(4)	$1874(2)$	2741 (5)
C(14)	- $13488(4)$	$2068(2)$	3 544(5)
C(15)	-0 732(4)	1 254(2)	$1924(4)$
C(16)	- 2233 (4)	$1428(2)$	1544 (5)
C(17)	-2982(6)	$1233(3)$	0341 (6)
C(18)	3 410(4)	1240 (2)	$6700(5)$
$\mathrm{C}(19)$	0939 (4)	$1373(1)$	$7783(4)$
$\mathrm{C}(20)$	3 258(4)	2 279(2)	$1580(5)$
$\mathrm{O}(1)$	$1199(3)$	1716 (1)	$8807(3)$
$\mathrm{O}(2)$	-0401(3)	$1291(1)$	7 278(3)
$\mathrm{O}(3)$	2676 (4)	-0007(1)	6 586(4)
$\mathrm{O}(4)$	$2701(3)$	1 190(1)	$2484(3)$
$\mathrm{O}(5)$	$2228(3)$	2 144(1)	$2787(3)$

(ii) Co-ordinates $\left(\times 10^{4}\right)$ of the hydrogen atoms

	x	y	z	Bonded to
$\mathrm{H}(1)$	-0417	-0054	5988	$\mathrm{C}(1)$
$\mathrm{H}(2)$	-1342	0166	7108	$\mathrm{C}(1)$
$\mathrm{H}(3)$	0539	-0220	8488	$\mathrm{C}(2)$
$\mathrm{H}(4)$	2589	0414	8638	$\mathrm{C}(3)$
$\mathrm{H}(5)$	1137	0592	4606	$\mathrm{C}(5)$
$\mathrm{H}(6)$	0973	1843	4976	$\mathrm{C}(6)$
$\mathrm{H}(7)$	-1597	0612	4225	$\mathrm{C}(9)$
$\mathrm{H}(8)$	-2421	1643	6177	$\mathrm{C}(11)$

Table 1(b) (Continued)

$\mathrm{H}(9)$	-3417	1158	5958	$\mathrm{C}(11)$
$\mathrm{H}(10)$	-4243	1255	3454	$\mathrm{C}(12)$
$\mathrm{H}(11)$	-4372	1863	4327	$\mathrm{C}(12)$
$\mathrm{H}(12)$	-3225	2216	2191	$\mathrm{C}(13)$
$\mathrm{H}(13)$	-1581	2226	4738	$\mathrm{C}(14)$
$\mathrm{H}(14)$	-0813	2329	2973	$\mathrm{C}(14)$
$\mathrm{H}(15)$	-0547	0789	1823	$\mathrm{C}(15)$
$\mathrm{H}(16)$	0028	1501	1156	$\mathrm{C}(15)$
$\mathrm{H}(17)$	-4390	1398	0613	$\mathrm{C}(17)$
$\mathrm{H}(18)$	-2605	0824	-0196	$\mathrm{C}(17)$
$\mathrm{H}(19)$	3403	1587	6056	$\mathrm{C}(18)$
$\mathrm{H}(20)$	3910	1016	5963	$\mathrm{C}(18)$
$\mathrm{H}(21)$	3681	13326	7589	$\mathrm{C}(18)$
$\mathrm{H}(22)$	3137	2608	1448	$\mathrm{C}(20)$
$\mathrm{H}(23)$	$\mathbf{4} 190$	2202	1911	$\mathrm{C}(20)$
$\mathrm{H}(24)$	2984	2199	0706	$\mathrm{C}(20)$
$\mathrm{H}(25)$	2445	-0346	7019	$\mathrm{O}(3)$
$\mathrm{H}(26)$	0165	0378	9094	$\mathrm{C}(2)$

Table 2
(a) Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for gibberellin A_{13} methyl ester with estimated standard deviations in parentheses
(i) Bond lengths

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.514(6)$
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.537(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.515(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.537(4)$
$\mathrm{C}(3)-\mathrm{O}(1)$	$1.433(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.557(4)$
$\mathrm{C}(4)-\mathrm{C}(18)$	$1.545(5)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.533(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.525(4)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.549(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.510(4)$
$\mathrm{C}(6)-\mathrm{C}(8)$	$1.576(4)$
$\mathrm{C}(7)-\mathrm{O}(3)$	$1.331(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.554(4)$
$\mathrm{C}(8)-\mathrm{C}(14)$	$1.535(4)$
$\mathrm{C}(8)-\mathrm{C}(15)$	$1.551(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.553(4)$
$\mathrm{C}(9)-\mathrm{C}(11)$	$1.545(5)$
$\mathrm{C}(10)-\mathrm{C}(20)$	$1.540(4)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.525(6)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.539(6)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.534(5)$
$\mathrm{C}(13)-\mathrm{C}(16)$	$1.5046)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.524(5)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.316(6)$
$\mathrm{C}(19)-\mathrm{O}(4)$	$1.194(5)$
$\mathrm{C}(19)-\mathrm{O}(5)$	$1.338(4)$
$\mathrm{C}(20)-\mathrm{O}(6)$	$1.202(4)$
$\mathrm{C}(20)-\mathrm{O}(7)$	1.336
$\mathrm{C}(21)-\mathrm{O}(3)$	$1.464(5)$
$\mathrm{C}(7)-\mathrm{O}(2)$	$1.211(6)$
$\mathrm{C}(23)-\mathrm{H}(32)$	1.13
$\mathrm{C}(23)-\mathrm{H}(27)$	0.86
$\mathrm{O}(1)-\mathrm{H}(28)$	0.92

(ii) Bond angles
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(1)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(18)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(18)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(19)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(19)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(19)$
$\mathrm{C}(18)-\mathrm{C}(4)-\mathrm{C}(19)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)$
110.6(3 112.7(3) 114.6(3) $109.4(3)$ 107.1(3) 106.3(3) 108.8(3) 112.5(3) 108.3(3) 114.1(3
106.3(3)

122.2(3)

$114.2(2)$
$104.8(2)$
$116.2(2)$
$103.4(2)$

$\mathrm{C}(22)-\mathrm{O}(5)$	$1.440(6)$
$\mathrm{C}(23)-\mathrm{O}(7)$	$1.450(5)$
$\mathrm{C}(1)-\mathrm{H}(1)$	1.03
$\mathrm{C}(1)-\mathrm{H}(2)$	1.01
$\mathrm{C}(2)-\mathrm{H}(3)$	1.08
$\mathrm{C}(2)-\mathrm{H}(4)$	0.93
$\mathrm{C}(3)-\mathrm{H}(5)$	1.03
$\mathrm{C}(5)-\mathrm{H}(6)$	1.05
$\mathrm{C}(6)-\mathrm{H}(7)$	1.02
$\mathrm{C}(9)-\mathrm{H}(8)$	1.08
$\mathrm{C}(11)-\mathrm{H}(9)$	1.05
$\mathrm{C}(11)-\mathrm{H}(10)$	1.03
$\mathrm{C}(12)-\mathrm{H}(11)$	1.07
$\mathrm{C}(12)-\mathrm{H}(12)$	1.01
$\mathrm{C}(13)-\mathrm{H}(3)$	1.02
$\mathrm{C}(14)-\mathrm{H}(14)$	0.96
$\mathrm{C}(14)-\mathrm{H}(15)$	0.95
$\mathrm{C}(15)-\mathrm{H}(16)$	1.16
$\mathrm{C}(15)-\mathrm{H}(17)$	1.05
$\mathrm{C}(17)-\mathrm{H}(18)$	1.12
$\mathrm{C}(17)-\mathrm{H}(19)$	1.03
$\mathrm{C}(18)-\mathrm{H}(20)$	0.98
$\mathrm{C}(18)-\mathrm{H}(1)$	1.00
$\mathrm{C}(18)-\mathrm{H}(22)$	1.01
$\mathrm{C}(21)-\mathrm{H}(23)$	1.04
$\mathrm{C}(21)-\mathrm{H}(24)$	1.13
$\mathrm{C}(21)-\mathrm{H}(29)$	0.91
$\mathrm{C}(22)-\mathrm{H}(25)$	1.11
$\mathrm{C}(22)-\mathrm{H}(30)$	1.10
$\mathrm{C}(22)-\mathrm{H}(31)$	1.21
$\mathrm{C}(23)-\mathrm{H}(26)$	1.13

Table 2(a) (Continued)

(b) Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for gibberellin A_{4} methyl ester with estimated standard deviations in parentheses
(i) Bond lengths

$\mathrm{C}(1)-\mathrm{C}(2)$	1.521(6)	$\mathrm{C}(20)-\mathrm{O}(5)$	1.451(5)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.520(5)	$\mathrm{C}(1)-\mathrm{H}(1)$	0.94
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.521(6)$	$\mathrm{C}(1)-\mathrm{H}(2)$	0.81
$\mathrm{C}(3)-\mathrm{C}(4)$	1.555(5)	$\mathrm{C}(2)-\mathrm{H}(3)$	0.92
$\mathrm{C}(3)-\mathrm{O}(3)$	1.424(5)	$\mathrm{C}(2)-\mathrm{H}(26)$	1.07
$\mathrm{C}(4)-\mathrm{C}(5)$	1.525(5)	$\mathrm{C}(3)-\mathrm{H}(4)$	1.04
$\mathrm{C}(4)-\mathrm{C}(18)$	1.527(5)	$\mathrm{C}(5)-\mathrm{H}(5)$	0.98
$\mathrm{C}(4)-\mathrm{C}(19)$	$1.520(5)$	$\mathrm{C}(6)-\mathrm{H}(6)$	0.96
$\mathrm{C}(5)-\mathrm{C}(6)$	1.538(4)	$\mathrm{C}(9)-\mathrm{H}(7)$	1.07
$\mathrm{C}(5)-\mathrm{C}(10)$	1.529(5)	$\mathrm{C}(11)-\mathrm{H}(8)$	1.14
$\mathrm{C}(6)-\mathrm{C}(7)$	1.507(4)	$\mathrm{C}(11)-\mathrm{H}(9)$	0.85
$\mathrm{C}(6)-\mathrm{C}(8)$	$1.548(5)$	$\mathrm{C}(12)-\mathrm{H}(10)$	1.01
$\mathrm{C}(7)-\mathrm{O}(4)$	$1.203(4)$	$\mathrm{C}(12)-\mathrm{H}(11)$	0.97
$\mathrm{C}(7)-\mathrm{O}(5)$	1.319(4)	$\mathrm{C}(13)-\mathrm{H}(12)$	1.02
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.562(5)$	$\mathrm{C}(14)-\mathrm{H}(13)$	1.10
$\mathrm{C}(8)-\mathrm{C}(14)$	1.533(5)	$\mathrm{C}(14)-\mathrm{H}(14)$	0.92
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.513(5)$	$\mathrm{C}(15)-\mathrm{H}(15)$	1.07
$\mathrm{C}(9)-\mathrm{C}(11)$	$1.530(6)$	$\mathrm{C}(15)-\mathrm{H}(16)$	1.12
$\mathrm{C}(10)-\mathrm{O}(2)$	1.477(4)	$\mathrm{C}(17)-\mathrm{H}(17)$	1.40
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.526(6)$	$\mathrm{C}(17)-\mathrm{H}(18)$	1.09
$\mathrm{C}(12)-\mathrm{C}(13)$	1.559(6)	$\mathrm{C}(18)-\mathrm{H}(19)$	0.96
$\mathrm{C}(13)-\mathrm{C}(14)$	1.541 (5)	$\mathrm{C}(18)-\mathrm{H}(20)$	0.94
$\mathrm{C}(13)-\mathrm{C}(16)$	1.509(6)	$\mathrm{C}(18)-\mathrm{H}(21)$	0.82
$\mathrm{C}(8)-\mathrm{C}(15)$	$1.545(5)$	$\mathrm{C}(20)-\mathrm{H}(22)$	0.76
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.515(6)$	$\mathrm{C}(20)-\mathrm{H}(23)$	0.95
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.322(7)$	$\mathrm{C}(20)-\mathrm{H}(24)$	0.81
$\mathrm{C}(19)-\mathrm{O}(1)$	$1.193(4)$	$\mathrm{O}(3)-\mathrm{H}(25)$	0.88

(ii) Bond angles	
(2)-C(1)-C(10)	11
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.7(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	112.0(3)
(2) $-\mathrm{C}(3)-\mathrm{O}(3)$	112.
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(3)$	104.9(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	108.5(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(18)$	110.7(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(18)$	117.1(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(19)$	106.6(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(19)$	99.9(3)
$\mathrm{C}(18)-\mathrm{C}(4)-\mathrm{C}(19)$	113.0(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	116.5(3)
(4) $-\mathrm{C}(5)-\mathrm{C}(10)$	99.9(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	102.1(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	113.9(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)$	105.7(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(8)$	113.5(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(4)$	125.9(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(5)$	111.1(3)
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{O}(5)$	123.1(3)
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{C}(9)$	105.3(3)
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{C}(14)$	114.8(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)$	$110.1(3)$
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{C}(15)$	116.9(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(15)$	108.9(3)
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{C}(15)$	100.8(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	105.9(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	113.2(3)

$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)$	$115.9(3)$
$\mathrm{C}(1)-\mathrm{C}(10-\mathrm{C}(5)$	$111.4(3)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$118.5(3)$
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$106.8(3)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{O}(2)$	$107.7(3)$
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{O}(2)$	$101.8(2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(2)$	$109.3(2)$
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	$112.5(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$111.7(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$108.4(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(16)$	$110.6(3)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)$	$103.0(3)$
$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	$99.9(3)$
$\mathrm{C}(8)-\mathrm{C}(15)-\mathrm{C}(16)$	$101.6(3)$
$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(15)$	$108.8(3)$
$\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(17)$	$125.3(4)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$125.9(4)$
$\mathrm{C}(4)-\mathrm{C}(19)-\mathrm{O}(2)$	$109.4(3)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{O}(1)$	$129.6(4)$
$\mathrm{O}(1)-\mathrm{C}(19)-\mathrm{O}(2)$	$121.0(3)$
$\mathrm{C}(10)-\mathrm{O}(2)-\mathrm{C}(19)$	$108.9(3)$
$\mathrm{C}(7)-\mathrm{O}(5)-\mathrm{C}(20)$	$116.3(3)$

group. In gibberellin A_{4} methyl ester (3b), the lactone bridge increases the internal ring a torsion angles at the $\mathrm{C}(4)-\mathrm{C}(5)$ and $\mathrm{C}(5)-\mathrm{C}(10)$ bonds (70.3-72.4$\left.{ }^{\circ}\right)$ and decreases the torsion angles at the $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(2)^{-}$ $\mathrm{C}(3)$ bonds ($-\mathbf{4 2 . 7} ; \mathbf{4 3 . 7 ^ { \circ })}$. It also decreases the bond angle $\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$ to 99.9° and increases $\mathrm{C}(5)^{-}$ $\mathrm{C}(4)-\mathrm{C}(18)$ to 117.1°. In contrast the axial ester groups in the A_{13} ester (lb) reduce the internal ring torsion angles at the $\mathrm{C}(4) \mathrm{C}-(5)$ and $\mathrm{C}(5)-\mathrm{C}(10)$ bonds to -56.4 and 60.7° and increase those at the $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(2)^{-}$ $\mathrm{C}(3)$ bonds $\left(56.1 ;-54.2^{\circ}\right)$. The bond angle at $\mathrm{C}(10)^{-}$ $\mathrm{C}(5)-\mathrm{C}(4)$ is increased to 114.2° and $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(18)$ decreased to 112.5°. Thus the $\mathrm{C}(18)$ methyl group on going from gibberellin A_{4} to A_{13} moves through an anticlockwise rotation of $c a .9^{\circ}$ about $\mathrm{C}(4)$ in the plane of $\mathrm{C}(4), \mathrm{C}(19), \mathrm{C}(10)$ as viewed in Figure 1. The closer approach of $\mathrm{C}(18)$ to $\mathrm{C}(7)$ in A_{13} causes $\mathrm{C}(7)$ to be moved closer to $\mathrm{C}(15)$ as seen from the decrease in the angle $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(8)$ from 113.2° in gibberellin A_{4} to 109.9° in gibberellin A_{13}. A reflection of the different ring A torsion angles between the 3 -hydroxy-group and the $\mathrm{C}(18)$ methyl group $\left[\mathrm{A}_{4}: \mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(18),-67^{\circ}\right.$; $\left.\mathrm{A}_{13}: \mathrm{O}(\mathbf{1})-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(\mathbf{1 8}), 51.6^{\circ}\right]$ is seen in the effect of the 3 -hydroxy-group on the $18-\mathrm{H}$ resonances in the n.m.r. spectra: gibberellin $\mathrm{A}_{9}-\mathrm{A}_{4}, \delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \quad 1.30-1.55$, $\Delta \delta(\mathrm{OH}) 0.25 ; \mathrm{A}_{25}-\mathrm{A}_{13}, \delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 1.74-2.10, \Delta \delta(\mathrm{OH})$ 0.36 . The shift to lower field of the $\mathrm{C}(\mathbf{1 8)}$ resonances in the C_{20} gibberellins may also be a reflection of the closer proximity to the $C(7)$ carboxy-group.

The ester group at $\mathrm{C}(7)$ could formally adopt a variety of conformations corresponding to free rotation about the $\mathrm{C}(6)-\mathrm{C}(7)$ bond. However the close proximity of $\mathrm{C}(18)$ and $\mathrm{C}(\mathbf{1 5})$ means that to avoid steric strain from short contacts of the ester group oxygen atoms with the $\mathrm{C}(18)$ methyl group or the $\mathrm{C}(15)$ methylene, the conformation with the $C(7)$ group approximately perpendicular to a line joining $\mathrm{C}(18)$ to $\mathrm{C}(15)$ is preferred. As can be seen the crystal structures stabilise opposite conformations in gibberellins A_{4} and A_{13} by different arrangements of intermolecular hydrogen bonds. Different conformations, obviously arising from other features, may persist in solution in some derivatives. Thus in gibberellin $\mathrm{A}_{12} 7$-aldehyde (4) the $\mathrm{H}(6)-\mathrm{H}(7)$ coupling constant is $6 \mathrm{~Hz}^{7}$ whilst in the corresponding gibberellin $\mathrm{A}_{4} 7$-aldehyde it is 2 Hz . The difference in reactivity of the $\mathrm{C}(7)$ carbonyl group between gibberellins A_{4} and A_{13} may be a consequence of the difference in steric hindrance to an incoming nucleophile at $\mathrm{C}(7)$. It has been assumed by Wipke and Gund ${ }^{8}$ that nucleophilic attack at a carbonyl group comes from a direction approximately along the normal to the plane of the carbonyl group at the carbon atom and that any other part of the molecule which lies close to the carbon atom in this direction will decrease the rate of attack by nucleophiles. This steric congestion has been expressed as a numerical coefficient. The work of Dunitz et al. ${ }^{9}$ has convincingly shown that attack by a nucleophile on a carbonyl group occurs at an angle of $c a .105 \pm 5^{\circ}$ to the $\mathrm{C}=\mathrm{O}$ vector in the vertical plane containing the bisector of the angle
between the two substituents at the carbonyl group suggesting that Wipke and Gunds' congestion factor

Figure 3 Packing diagrams for (a) gibberellin A_{13} trimethyl ester (lb); (b) gibberellin A_{4} methyl ester (3 b)
calculation should be modified. In the case of the gibberellins A_{4} and A_{13} the methyl group $\mathrm{C}(18)$ and the methylene group $\mathrm{C}(\mathbf{1 5})$ would be expected to cause steric congestion at the $\mathrm{C}(7)$ carbonyl group. Views of the two molecules in parallel projection on the mean plane of the $\mathrm{C}(7)$ ester groups (Figure 2) show that in A_{13} the $\mathrm{C}(18)$ methyl group lies in the plane bisecting the $\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$ angle as does $\mathrm{C}(15)$ on the opposite side and both are slightly behind the carbonyl group blocking the expected route of an attacking nucleophile. By
contrast, in gibberellin A_{4} the total conformational change has moved both $\mathrm{C}(\mathbf{1 5})$ and $\mathrm{C}(18)$ away from the line $\mathrm{C}(7)-\mathrm{O}(5)$ so that in the alternative conformation of the $\mathrm{C}(7)$ ester group, the steric hindrance is considerably reduced.
In both gibberellins ring c is in the boat conformation and, rather surprisingly, there is little difference between the torsion angles involving the $\mathrm{C}(8)-\mathrm{C}(14)$ and $\mathrm{C}(\mathbf{1 4)}$ $\mathrm{C}(13)$ bonds although the nature of the $\mathrm{C}(10)$ substituent, with which C(14) may interact, has changed.

experimental

Gibberellin A_{13} Trimethyl Ester (1b).-Crystal data. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7}, M=420.6$, orthorhombic, $a=15.384(1), \quad b=$ $16.283(2), c=8.865(1) \AA, U=2220.7 \AA^{3}, Z=4, D_{\mathrm{c}}=$ $1.26 \mathrm{~g} \mathrm{~cm}^{-3}, F(000) 904, \mathrm{Mo}-K_{\alpha}$ radiation, $\mu\left(\mathrm{Mo}-K_{\alpha}\right) 1.0$ cm^{-1}, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19) ${ }^{10}$ from the systematic absences $0 k 0$ for k odd, $h 00$ for h odd, $00 l$ for l odd.

Crystallographic Measurement.-A crystal of dimensions $c a$. $0.5 \times 0.25 \times 0.25 \mathrm{~mm}$ was used for data collection. Accurate cell dimensions were determined from a leastsquares treatment of setting angles for 12 reflections measured on a Hilger and Watts Y290 four-circle diffractometer. Diffraction data were collected by an $\omega / 2 \theta$ step scan for the positive octant $h k l$ in two consecutive shells $\theta=$ $2-22^{\circ}$ and $22-25^{\circ}$ with $\mathrm{Mo}-K_{\alpha}$ radiation (graphite monochromator). Each reflection was measured in 70 steps of 0.5 s each and background counts of 17.5 s were made at the end of each scan. The intensities of three standard reflections, monitored every 100 reflections, showed no significant changes. Raw data were corrected for Lorentz and polarization effects. Of 2270 reflections measured, 1919 having $I>3 \sigma(I)$ were used in the structural analysis.

Structure Determination and Refinement.-All reflection data were converted into normalized structure factor magnitudes $(|E|)$ and phases were derived by multiple-start tangent formula procedures ${ }^{11}$ using the 207 reflections with $|E|>1.50$. The best E-map gave a partial structure with rough atom positions for 17 non-hydrogen atoms taken as carbon. The remaining non-hydrogen atoms were located by tangent refinement of partial structures ${ }^{12}$ using the 17 atom positions to obtain the best 30 phases. The atom positions with anisotropic temperature factors were refined by large-block-matrix least-squares using the 1919 significant reflections with unit weight. Ambiguities between oxygen and carbon atoms were resolved on the basis of temperature factors and bond lengths. Two successive difference Fourier maps each gave the positions of the 32 hydrogen atoms. Each hydrogen atom was given the isotropic temperature factor of the carbon atom or oxygen atom to which it is bonded. A few more cycles of least squares refinement of all non-hydrogen atoms with anisotropic temperature factors and a weighting scheme defined as $\omega=1.0 /\left[\sigma^{2}(F)+0.001(F)^{2}\right]$ gave convergence at a residual $R_{F}=0.051$ and $R_{\omega \mathrm{F}}=0.06$ when the ratio of shift to e.s.d. for any non-hydrogen parameter was less than 0.2 and a final difference Fourier map was everywhere less than $0.18 \mathrm{e}^{\AA-3}$.

[^0]Gibberellin A_{4} Methyl Ester (3b).-Crystal data. $\mathrm{C}_{20} \mathrm{H}_{26}{ }^{-}$ $\mathrm{O}_{5}, M=346.4$, orthorhombic $a=9.500(1), b=22.619(3)$, $c=8.512(1) \AA, U=1829.1 \AA^{3}, Z=4, D_{\mathrm{c}}=1.26 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000) 744$; Mo- K_{α} radiation, $\mu\left(\mathrm{Mo}-K_{\alpha}\right) 0.96 \mathrm{~cm}^{-1}$, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19) ${ }^{10}$ from the systematic absences $0 k 0$ for k odd, $h 00$ for h odd, $00 l$ for l odd.

Crystallographic Measurements.-A crystal of dimensions $c a .0 .40 \times 0.35 \times 0.25 \mathrm{~mm}$ was used for data collection as described above. However each reflection was measured in 60 steps of 0.5 s each and background counts of 15 s were made at the end of each scan. Of 1902 reflections measured, 1531 having $I>3 \delta(I)$ were used in the structure analysis.

Structure Determination and Refinement.-The structure was determined and refined as above. At convergence the final residual $R_{F}=0.048$ and $R_{\omega \mathrm{F}}=0.055$ when the ratio of shift to e.s.d. for any non-hydrogen parameter was less than 0.1 and a final difference Fourier map was everywhere less than $0.27 \mathrm{e}^{-3}$.

For both structures initial data processing was done with local programmes. Data were then converted into a format suitable for the SHELX programme of G. M. Sheldrick. Scattering factors were taken from ref. 13 and no allowance was made for anomalous scattering. Final atom co-ordinates are listed in Table 1. The final structure factors together with torsion angles and thermal parameters are listed in Supplementary Publication No. SUP 22517 (24 pp.).*

Since the absolute configuration of the gibberellins is well known no attempt was made to determine the absolute configuration in the present study. In all drawings of gibberellin A_{4}, the configuration is inverted from the tabulated co-ordinates to make it comparable to gibberellin A_{13}.
[8/1250 Received, 6th July, 1978]

REFERENCES

${ }^{1}$ R. H. B. Galt, J. Chem. Soc., 1965, 3143.
${ }^{2}$ B. E. Cross, J. Chem. Soc., 1954, 4670.
${ }^{3}$ D. M. Harrison and J. MacMillan, J. Chem. Soc. (C), 1971, 631.
${ }^{4}$ G. Ellames and J. R. Hanson, unpublished work; G. Ellames, D.Phil. Thesis, University of Sussex, 1977.
${ }^{5}$ P. W. Brian, J. F. Grove, and T. P. C. Mulholland, Phytochemistry, 1967, 6, 1475 ; A. Crozier, C. C. Kuo, R. C. Durley, and R. P. Pharis, Canad. J. Botany, 1970, 48, 867; D. R. Reeve and A. Crozier, J. Exp. Bot., 1974, 25, 431; G. V. Hoad, R. P. Pharis, I. D. Railton, and R. C. Durley, Planta, 1976, 130, 113.
${ }^{6}$ F. McCapra, A. T. McPhail, A. I. Scott, G. A. Sim, and D. W. Young, J. Chem. Soc. (C), 1966, 1577; E. Hohne, G. Schneider, and K. Schreiber, J. prakt. Chem., 1970, 312, 816 ; L. Kutschabsky, G. Reck, and G. Adam, Tetrahedron, 1975, 31, 3065.
${ }^{2}$ J. R. Hanson and J. Hawker, Phytochemistry, 1973, 12, 1073.
${ }^{8}$ W. T. Wipke and P. Gund, J. Amer. Chem. Soc., 1976, 98 8107.
${ }^{\theta}$ H. B. Burgi, J. D. Dunitz, J. M. Lehn, and G. Wipff, Tetrahedron, 1974, 30, 1563.
${ }_{10}$ 'International Tables for X-ray Crystallography,' Kynoch Press, Birmingham, 1962, vol. 1.
${ }_{11}$ G. Germain and M. M. Woolfson, Acta Cryst., 1968, B24, 91.
12 J. Karle, Acta Cryst., 1968, B24, 182.
13 D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321 ; R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.

[^0]: * For details see Notice to Authors No. 7 in J.C.S. Perkin I, 1978, Index issue.

